

Soil Management for Healthy Food and Environment

Dr. Rattan Lal Carbon Management and Sequestration Center The Ohio State University Columbus, OH

THE WHEEL OF LIFE

"Life on the earth depends directly on the balance between producers (crops which have the ability to fix solar energy), consumers (people and animals), and decomposers (the unknown or littleinvestigated world of soil life)."

"The health of soil, plants, animals and people is one and indivisible. —Sir Albert Howard (1947)

Carbon Management and Sequestration Center

THE SOIL-LIFE NEXUS

Essentially all life depends upon the soil---There can be no life without soil and no soil without life;they have evolved together (Charles E.Kellogg,USDA)

3

SOIL HEALTH

Soil's capacity, as a dynamic and biologically active entity, within natural and managed landscapes, to sustain multiple ecosystems services including net primary productivity, food and nutritional security, biodiversity, water purification and renewability, carbon sequestration, air quality and atmospheric chemistry and elemental cycling for human wellbeing and nature conservancy.

The Ohio State University

MEETING FOOD DEMAND BY 2050

-. The and -. The and -. The and food and -. The and food and -. The and -. T We must reconcile the need of advancing food and nutritional security with the necessity of improving stems, through sustainable eco-intensification and restoration of soil health.

Carbon Management and Sequestration Center

SUSTAINABLE INTENSIFICATION

The strategy is to produce more food:

Produce more from less

- from less land,
- per drop of water,
- per unit input of fertilizers and pesticides,
- per unit of energy, and
- per unit of C emission.

COUPLED CYCLING OF H₂O, C, N, P

and the second s

Sustainable use

of soil & water resources

10stration

AND THE ECOSYSTEM SERVICES GENERATED

THE OHIO STATE UNIVERSITY

THE SHORT-TERM GLOBAL CARBON CYCLE

SOIL ORGANIC CARBON SEQUESTRATION

It is the process of transferring CO_2 from the atmosphere into the soil of a land unit plants, plant residues and other organic solids which are stored or retained in the unit as a part of the soil organic matter with a long mean residence time.

THE OHIO STATE UNIVERSITY

THE OHIO STATE UNIVERSITY

CREATING POSITIVE C BUDGET

RATE OF CARBON SEQUESTRATION

Carbon Management and Sequestration Center

DROUGHT OF 2012

Corn with no residue.

Corn with 100% residue

THE OHIO STATE UNIVERSITY

NUTRIENTS REQUIRED TO CONVERT BIOMASS INTO HUMUS

Crop Residues

Elemental Ratio	Cereal Residues	Humus
C:N	100	12
C:P	200	50
C:S	500	70

SOCIETAL VALUE OF SOC

- Cost of Residue + Nutrients: **\$120/ MgC**
- Payments for Ecosystem Services at \$40 | ha. yr

THRESHOLD LEVEL OF SOIL ORGANIC MATTER IN 0-30CM LAYER

SOM : 2.5 - 3.5% **SOC** : 1.5 - 2.0%

CROP YIELD INCREASE WITH INCREASE IN SOC BY 1 MgC/ha

Crop	Yield Increase (Kg/Ha•MgC)		
Maize	100 - 300		
Soybeans	20 - 50		
Wheat	20 - 70		
Rice	10 - 50		
Sorghum	80 - 140		
Millet	30 - 70		
Beans	30 - 60		

30-50 million tons/yr in developing countries

REDUCING LAND AREA UNDER CEREALS IN THE 21ST CENTURY SAVING LAND FOR NATURE CONSERVANCY

	Year			
Parameter	2005–07	2050	2080	2100
Population	6.4	9.7	10.6	11.2
Per capita food consumption (kcal)	2772	3070	3200	3300
Cereal production (10 ⁶ Mg)	2012	3012	3350	3540
Land area needed for intensive agriculture (Mha)	613	600	560	500
N fertilizer use (10 ⁶ Mg)	200	160	120	100
The desired global average cereal yield (kg ha ⁻¹)	3280	5000	6000	7000

"Use the best, save the rest"

SECURITIZATION OF FOOD AND THE ENVIRONMENT THROUGH SOIL SUSTAINABILITY

